FPGA - 数字经济时代的基石
正如我在《科技以人为本 - CES结语》一文中讲的,科技在近20年里发生了翻天覆地的变化,背后的推动主要来自于半导体技术的飞速发展,其中最大的革命是天才的人们通过模数变换,把自然界的一切模拟量变换到数字域,在数字域里用我们5千年来练就的功力 - 数学来描述并处理模拟的世界,在数字逻辑的基础上人们又发明了基于指令的计算、数字信号处理等技术,于是有了我们今天的压缩视频、数字通信、无线网络、互联网等等,可以说“数字”是当今半导体科技的主旋律,我们正处于一个“数字时代”,正如本年度的CES也把主旋律定义成了“数字经济”。从事电子技术的同仁们都知道,数字逻辑的基本单元就是“门”,由众多的“门”构成各式各样无论多么复杂的逻辑功能。FPGA - “现场可编程”“门阵列”,也就成了数字领域的“乐高”,用它可以搭建出任意的作品。
FPGA的演进
让我先来回顾一下历史。1989年我第一次接触到电路板的时候,上面密布着一系列的TTL、CMOS芯片,一颗14~20只管脚的芯片中一般只有4-6个简单的“门”,十几个芯片的大板子也就完成寻址、译码之类的功能,使用起来是非常的痛苦,如果要修改逻辑,只能用手术刀切割电路板并进行飞线。94年的时候我开始使用GAL
在前后十年多的时间里,可编程逻辑器件尤其是FPGA从结构、容量、速度、编程软件、服务模式等方面都有了巨大的变化,小到最基本的数字逻辑,大到复杂的通信网络、视频编解码系统乃至ASIC原型设计,无处不见FPGA的身影。今天如果一个研发用的电路板上没有FPGA,这个研发项目的技术含量基本不高;如果一个工程师不会使用FPGA,他根本不好意思跟别人说自己是做硬件的;如果一个理工科院校还没有FPGA的课程,这个学校一定十分不靠谱,需要Xilinx大学计划的帮助。
FPGA的优势:
根据应用的不同,设计者所采用的解决方案也会不同,在大规模数字芯片中比较典型的技术主要有:微处理器、DSP、专用集成电路ASIC等,相对于这些技术的应用来讲,FPGA有什么优势呢?
1. 微处理器:今天的微处理器(包括微控制器)品种繁多,结构也各不相同,从4位、8位、16位、32位到64位,有8051,PIC,RISC、ARM、MIPS、Xtensa以及X86等,他们大多有丰富的接口同各种外设进行连接,通过软件执行不同的进程,从而完成一定的任务,并将控制命令或结果进行输出。可以说通过软件编程微处理器可以做任何事情,但是致命的缺点就是速度有限,在外部时钟的节拍下顺序执行一条条的指令,不能并行处理,因此微处理器厂商只能玩命提高芯片的速度(比如Intel的芯片时钟在2GHz以上,ARM已经在600MHz以上),对于更复杂的任务只能多放几个兄弟在里面一起干活,也就是今天的多核技术。由于一般稍微复杂一些的系统都会用到微处理器用于输入输出、多进程处理以及网络通信等,很多满足一定性能需求的通用微处理器成本较低,因此被广泛采用。现在微处理器领域最热门的技术术语无疑就是 “嵌入式系统”了,但我可以负责任地讲,大多数人对“嵌入式系统”的理解是片面甚至是错误的。有些公司为了商业利益把嵌入式系统以“皇帝的新装”模式进行大规模地忽悠,导致人们几乎把“嵌入式系统”同某一种IP类型画上了等号,这个行业涌现出了大批的根本不懂嵌入式系统的嵌入式系统工程师。
2. DSP
3. ASIC
4. FPGA: 它比较明显的缺点就是相对来讲成本较高,主要用于研发过程中或者市场量不会很大,FPGA在系统的整体价格中不敏感。一颗FPGA芯片的价格从低于1美元到几千美元不等,当然这是可以理解的,毕竟灵活性是靠高度的冗余带来的。它的好处是其它任何一种技术无法比拟的 - 它几乎可以做任何事情,你可以用它搭建多个微处理器,用它构建自己的乘、除法单元做出几个DSP来,而且这些处理器、DSP可以同时干活,并行工作,与此同时您还可以利用芯片内部未用的资源做很多辅助的功能,可以说是高度的灵活。
以一个应用为例,今天的汽车电子也是以人为本,该领域的一个重要的技术热点就是“司机帮助(DA)”系统,它由超声、雷达、照相机以及激光等多种不同的传感器构成,这些不同的传感器在不同的时刻或者同一时刻把相应的信号采集下来,发往中央处理单元进行识别、运算、做出判断,帮助司机在倒车、高速行驶以及夜间行驶的时候能够对周围的环境在最短的时间内做出准确的判断并做出一系列的安全保护动作。如果采用微处理器或DSP对多传感器的信号进行处理,它们无法并行执行多个任务,并且同其他系统进行互联,因此就会造成系统的处理时间延迟,可靠性差,从而导致事故无法及时避免。如果采用ASIC呢?随着用户对功能要求的不断增加,对性能要求的不断升级,也就要求算法要不断的改进,显然采用ASIC无论从灵活性还是成本上都是不合算的。图1是Xilinx专为汽车电子开发提供的功能模块,图2为在一颗Spartan-3E FPGA中针对“司机帮助”集成了很多的功能 。
图1 FPGA平台能够支持的“司机帮助”系统功能
图2 采用Xilinx Spartan-3E的“司机帮助”解决方案
FPGA的设计:
FPGA的功能越是强大,对设计的要求也就越高,毕竟有那么多的管脚需要跟其它芯片连接起来,有那么多的功能要一行一行地采用逻辑写出来,远远不是十年前处理门级电路的时候了。虽然今天大多数用过FPGA的工程师已经对这个痛苦的过程深有体会,我还是把他们列举在此:
1. 电路板设计:
现在的电路板设计动不动就是4层板、6层板甚至更多层,芯片的封装也变得稀奇古怪,什么QFN、BGA等等,如果发现了连接不对想手工修改,拿着烙铁都找不到往哪里烫,根本没有露出来的管脚。尤其是FPGA芯片, 256个管脚的BGA封装都算照顾你了,如果再增加一些功能,容量再大一些,一不留神就到1000多个管脚去了,光做原理图中的符号就要折腾你三天,完了还要拿着放大镜不断地检查,否则做回来的电路板极有可能是废的。这还不算,等你布局、布线的时候你会发现很多的线都是扭着的,一是难布,二是电气性能也不好,好在FPGA的管脚是可以重新配置的,修改一下管脚的定义就可以让芯片之间的联线能过做到最优。
当然系统的速度高了,对高速数字设计方面的知识要求就是必须的了,这里面有一个词叫“信号完整性”,有几位美国大牛在这方面很有研究,其中有不少他们的著作翻译成中文了。如果你想真的理解并能够灵活应用,好好回炉去学扎实电磁场理论,不懂电磁理论,就不可能做好高速数字设计。FPGA支持各种高速串、并行总线并在很多系统中要和高速的数据、时钟进行连接,如果信号被你给搞得不完整了,整个系统性能会大大降低甚至不干活。
一般的系统都会有一个需要大电流的Core电压(1.2V或1.8V等,取决于工艺)和一个需要小电流的接口电压(一般是+3.3V),并且有多组不同的地。除了这些对工程师的布线提出挑战之外,还必须重视的一个部分就是锁相环(PLL/DLL),这个部分的布线是相当的关键,一旦有问题,整个系统的性能就会大打折扣,虽然数字的电路不是0就是1,可它就跑不快了。
2 逻辑设计:
最初用PLD/FPGA的时候还都是采用图形输入法,直观而原始。现在FPGA的用户基本都在采用更高级的语言 - VHDL或Verilog,这种语言高级得如同C,用起来非常容易。但是您千万不能把它当C来使唤,毕竟硬件和软件还是不同的。4年前在我做硬件工程师的时候,一个擅写DSP软件的兄弟写了一段FPGA的代码,他花了整整一页的篇幅实现了一个用硬件的思路只要4句话就可以完成的功能,搞得我苦笑不得。在这里面要时刻注意的是,FPGA内部多个功能模块都是可以并行操作的,如果用程序的思路去写,基本上会让他们排着队串着出来,当成DSP用了。
3 充分利用现有的资源:
无需争议,今天你已经不可能徒手把一个Spartan-3E中哪怕最小的系列给填满了,重新写一个I2C接口,重新做一个以太网的MAC作为锻炼还可以,在实际的项目中每个都自己去写是不可取的,如何利用现有的资源是非常重要的。首先在每个人的设计工作中要注意积累,把曾经用得不错的功能模块认真完善后写好文档以便今后自己或他人使用;再次FPGA的厂商都在配套的软件中内嵌一些免费的功能模块,根据自己的需求可以灵活地进行配置使用。当今互联网时代,信息分享成了主旋律,因此你可以方便地在一些开源的社区中找到自己需要的东西,比如在www.openhw.org社区中你就可以找到并下载很多其他FPGA同仁们开发并验证过的功能模块,如果有问题还可以在社区内同他们进行互动交流,咨询等,要把这些先进的手段都用上。当然如果公司有财力,又需要在最短的时间内推出产品,您可以到FPGA厂商的网站上,那里陈列着琳琅满目的商用IP, 这些都是FPGA厂商会同他们认证过的联盟厂商共同推出来的,您可以放心地使用。图3为Xilinx公司为消费电子领域的“数字显示屏”提供的系列IP示例。
图3 Xilinx同联盟厂商提供的用于“数字显示屏”的系列IP
FPGA的改进:
技术仍在不断发展,而且是以更快的步伐。FPGA在容量、功能和速度上的提高带给我们今天年轻人的压力越来越大,那么多的专业知识需要学习,那么多的设计技巧需要掌握,那么多的系统功能需要实现,对用户的挑战同样也是对FPGA厂商的挑战,如何能够让用户在最短的时间内设计出满足其性能需要的产品是FPGA厂商面临的最主要的问题,同时也影响着他们服务模式的改变,在此列举出我认为目前FPGA厂商需要注意的一些问题。