
曙海教学优势
本课程,秉承二十一年积累的教学品质,以项目实现为导向,面向企事业项目实际需要,老师将会与您分享设计的全流程以及工具的综合使用经验、技巧。课程可定制,线上/线下/上门皆可,热线:4008699035。
  曙海培训的课程培养了大批受企业欢迎的工程师。大批企业和曙海
     建立了良好的合作关系,20多年来,合作企事业单位以达30多万。曙海培训的课程在业内有着响亮的知名度。
此课程重点介绍 MATLAB 中使用 Statistics Toolbox , Machine Learning Toolbox™ 和
Deep Learning Toolbox™ 功能的数据分析和机器学习技术。本课程
演示如何通过非监督学习发现大数据集的特点,以及通过监督学
习建立预测模型。课程中的示例和练习强调用于呈现和评估结果
的技巧。内容包括:
| Importing and Organizing Data | Objective: Bring data into MATLAB and organize it for analysis, including normalizing data and removing observations with missing values. · Data types · Tables · Categorical data · Data preparation | 
| Finding Natural Patterns in Data | Objective: Use unsupervised learning techniques to group observations based on a set of explanatory variables and discover natural patterns in a data set. · Unsupervised learning · Clustering methods · Cluster evaluation and interpretation | 
| Building Classification Models | Objective: Use supervised learning techniques to perform predictive modeling for classification problems. Evaluate the accuracy of a predictive model. · Supervised learning · Training and validation · Classification methods | 
| Improving Predictive Models | Objective: Reduce the dimensionality of a data set. Improve and simplify machine learning models. · Cross validation · Hyperparameter optimization · Feature transformation · Feature selection · Ensemble learning | 
| Building Regression Models | Objective: Use supervised learning techniques to perform predictive modeling for continuous response variables. · Parametric regression methods · Nonparametric regression methods · Evaluation of regression models | 
| Creating Neural Networks | Objective: Create and train neural networks for clustering and predictive modeling. Adjust network architecture to improve performance. · Clustering with Self-Organizing Maps · Classification with feed-forward networks · Regression with feed-forward networks |